Experimental Safety Reviews and Education for the Research Laboratory – What If Analysis

Ken Kretchman, CIH, CSP, Director, EH&S, NC State University

Experimental Safety Reviews in a Research Setting – Three Points

- If planning and preparation for a review is conducted in a particular manner, you could cancel the review at the last minute and still have derived benefits
- If the review is conducted in a particular manner, participants are better prepared to spot and prevent research incidents in the future.
- Students can apply these concepts to error / incident prevention activies in their own lives and in future employment applications aside from safety.

Process Safety Management Education (P. Conlon)

LAB PROCESS SAFETY MANAGEMENT

- Student and Researcher Participation
- Process Safety Information
- Process Hazard Analysis
- Operating Procedures & Safe Work Permits
- Student and Researcher Training
- Pre-Startup Safety Review
- Mechanical Integrity
- Management of Change
- Emergency Planning and Response
- Incident Investigation
- Compliance Auditing

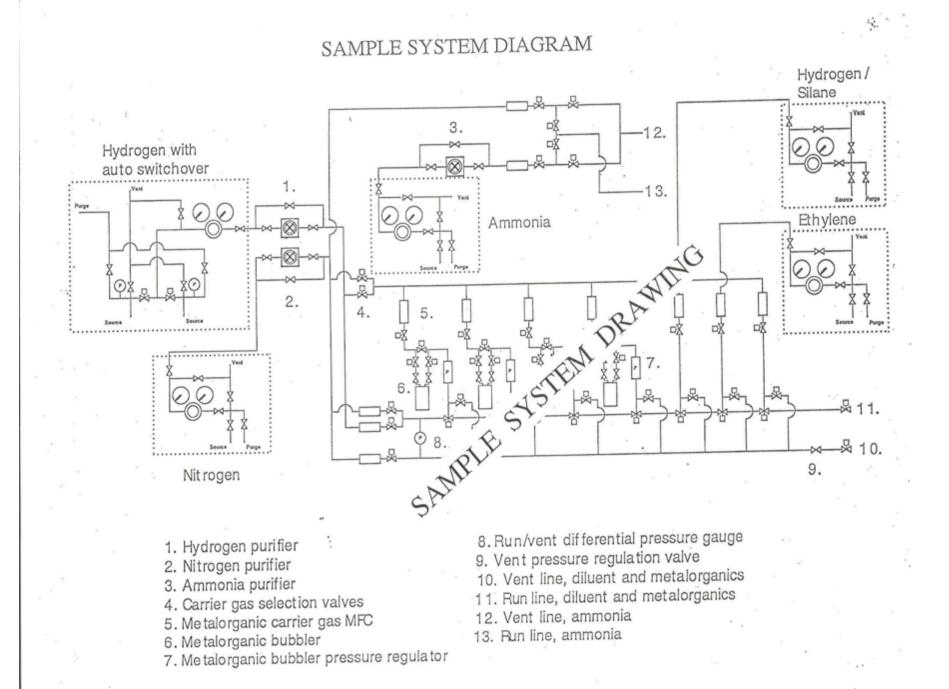
Process Safety Management Education PHA Basics (P. Conlon)

- LAB PROCESS HAZARD ANALYSIS Address:
 - Process Hazards
 - Previous Incidents
 - Engineering and Administrative Controls
 - Consequences of Control Failures
 - Human Factors
 - Possible Health and Safety Effects on Employees (qualitative evaluation)

Based on 29 CFR 1910.119(e) - Process Safety Management of Highly Hazardous Chemicals - Process Hazard Analysis

LAB EXPERIMENTAL HAZARD REVIEWS

- Team approach is ideal include students where possible
- Members with experimental experience and knowledge
- System to address and document:
 - Findings and recommendations
 - Scheduling and completion of corrective actions
 - Communications with affected personnelDocument retention


Based on 29 CFR 1910.119(e) - Process Safety Management of Highly Hazardous Chemicals - Process Hazard Analysis

Step 1 – Preparing for the Review

- Either EH&S is contacted by the Principle Investigator (PI) or EH&S does the contact
- PI is directed to:
 - Arrange time for the review
 - Invite the scientist with primary responsibility for the experiment. This person will be responsible for having the review conducted and documented. EH&S will participate and facilitate if you would like.
 - Review team participants including maintenance
- Result Accountability and Responsibility Verified – as well as realization that there may be other stakeholders with questions

Step 2 – Preparation for the Review

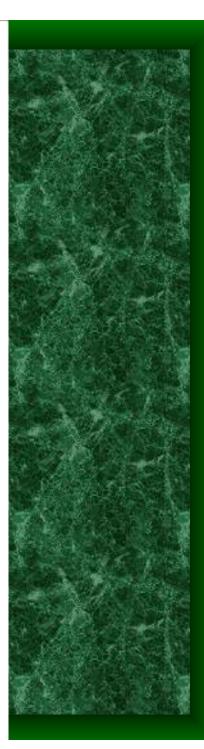
- PI is provided in advance with review forms, checklists, and brief description of how review is to be conducted.
 - Instructions include requirement for:
 - **Detailed diagram** of the **experiment** (includes component parts)
 - Experiment description using the detailed diagram provided to the review team (Detailed Drawing as Necessary)
 - List of Materials and Potential Hazards
 - Bring any SOPs
 - Startup Checklist (Perhaps)

Overview of Process and Equipment

Principal Investigator:	
Qualified Operator(s):	
Lab Location:	Phone:
Office Location:	Phone:
Brief Description of Process:	
Brief Description of Equipment:	

List the Chemicals Used:

Gases


Chemical Name	Max. Flow Rate	Typical Flow Rate	Typ. Flow Duration	# of Runs / Week

Liquids

Chemical Name	Max. Flow Rate	Typical Flow Rate	Typ. Flow Duration	# of Runs / Week
		1		

Solids

Chemical Name	Quantity in System	Quantity Consumed per month (year)

System Basics

What is the normal operating pressure of the system?_____

List the types of alarms (audible, visible) on the system._____

Does the system have the following: EPO (Em. Pwr. Off), EGO (Em. Gas Off), Gas Monitoring, Exhaust Flow Monitoring?

Can the following hazards exist?

_	Explosion	
	Implosion	
	Electrocution	
	Electric Shock	
	Electric Burn	
	Thermal Burn (hot)	
_	Thermal Burn (cold)	
	RF Exposure	
	RF Burn	
	Padioastiva Exposure	

- Radioactive Exposure
- Allergic Reaction
- Exothermic Reaction
- Excessive Noise

 Intense Light

 Laser

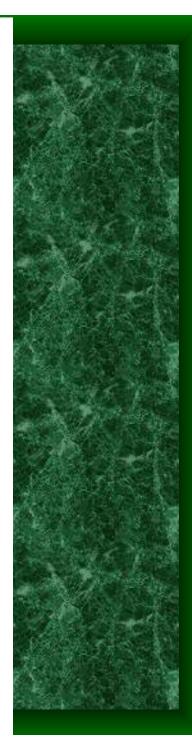
 Pinch Points

 Falls

 Struck By

 Caught Between

 Sharps / Cuts

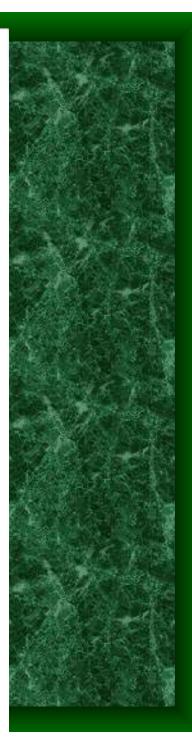

 Air Contamination

 Water Contamination

 Soil Contamination

 Muscle Strain

 Eye Strain


Laboratory Equipment Startup Checklist

- Clearances all appropriate
- Emergency systems (sprinkler, smoke alarms, gas alarms, etc) all functional from lab to Public Safety
- All items from applicable hazard reviews are resolved
- Lab Safety plan completed and approved
- · Emergency procedures, including evacuation are in place
- All applicable employee / student training has been conducted
- All equipment interlocks have been tested and are operational
- Equipment using hazardous chemicals or gases have been tested with low hazard materials (baths filled with water, aspiration systems tested, inert gases used for hazardous gas equipment) with all systems found to be functional - no leakage, etc.
- Ventilation systems have been balanced and labeled, with ventilation alarm devices in place
- Appropriate electrical inspection has been performed
- Key work practices and procedures are understood (chemical/gas receiving, transport, disposal, gas cylinder changes, equipment troubleshooting and maintenance)

Comments

Both Signatures Required for Approval for Startup

Lab Principal Investigator	2	Date:
Env. Health and Safety	2	Date:

A Little Training Prior to the Review Would be Ideal

- In Undergraduate and/or Graduate Academic Training
 - Common Incident Causes
 - Lessons Learned by Category

At the Start of the Review

 Scope and Limitations of the Review
 Assumptions During the Review

Some Common Incident Causes Inadequate Understanding – Chemical, Physical Properties of Products / Byproducts Inadequate Engineering Controls Reliance on Work Practices in Lieu of **Engineering** Controls Inadequate Selection / Use of PPE Failure to Practice Lockout/ Tagout Human Factors Problems Not Recognized Inadequate Attention to Management of Change

Horror Stories (Lessons Learned)

 Disilane Fire (lockout / tagout) Clean Hood Hotplate (human factors) MOCVD Purge Sequence (engineering) controls in lieu of work practices) Silane Scrubber (don't make assumptions) • Clean Room Immersion Heater (redundant controls and devastating business interruption) Hydrogen Fire in Glove Box (Mgt of Change)

Human Error Trevor Kletz - "What Went Wrong"

"They know what they should do, want to do it, and are physically and mentally capable of doing it. But they forget to do it. Exhortation, punishment, or further training will have no effect. We must either accept an occasional mistake or change the work situation so as to remove the opportunities for error or make errors less likely." STOP HERE – What has research group learned before review has even started ?

Step 1 Result – Accountability and Responsibility Verified – as well as realization that there may be other stakeholders with questions

Step 2 Result – Have schematic for use with review and for posterity – mgt of change.
Understand what will need to be in place prior to startup. Have understanding of equipment operation and materials to describe process and hazards

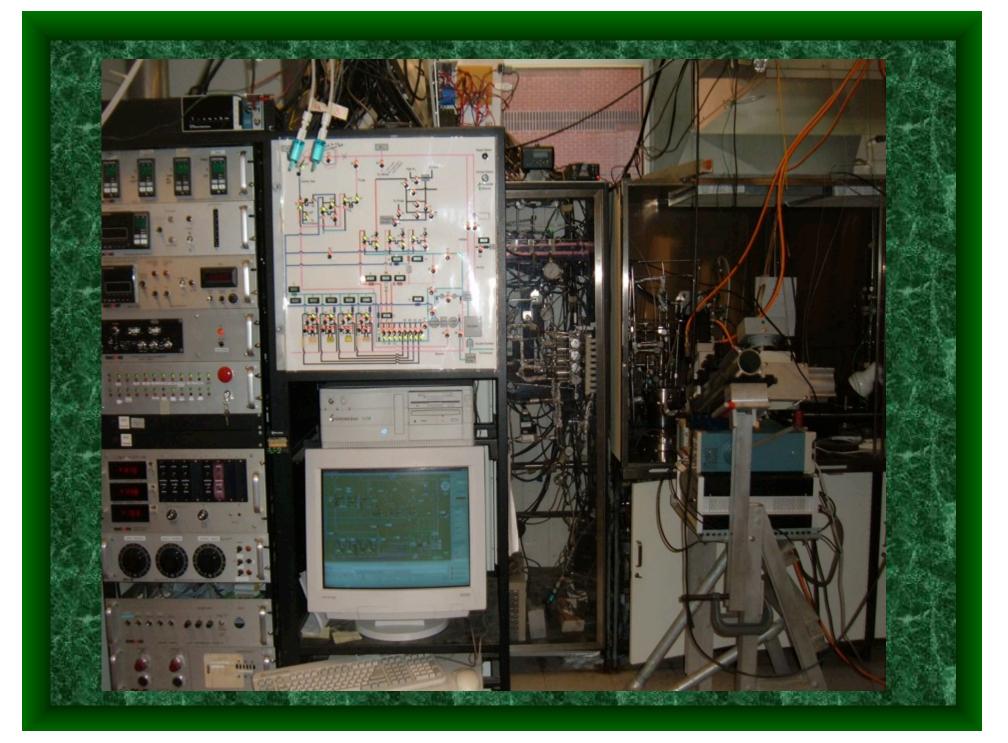
Step 3 – Conduct Review

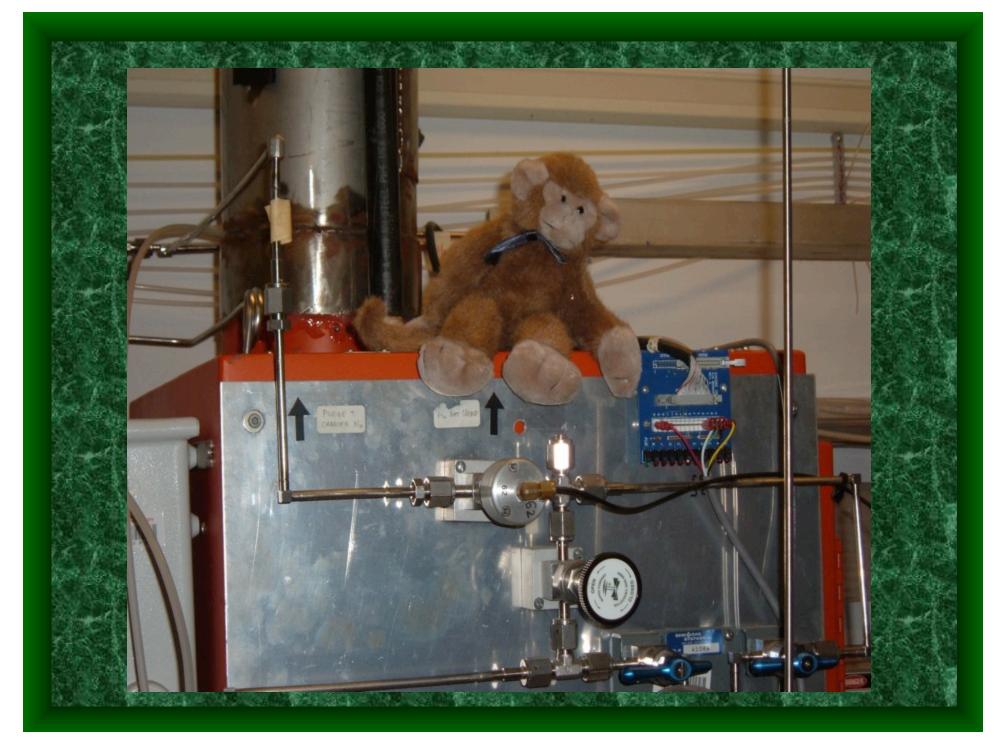
- Establish Ground Rules Example Won't Accept Procedural Controls only For High Severity Events – MOCVD example
 Facilitate by Allowing Sufficient Discussion for Process Owners (Grad Students, Post
 - Docs) to Reach Appropriate Conclusions -"Muzzle the Experts" - "It's the Process Stupid"
 - Document, Assign Follow Up Action Reference Startup Checklist

"What-If" Analysis Form Description of Operation: Dept.: By: Date: What If? Answer Likeli-Severity Recommendations hood

Table 1. HAZOP Study Deviations Created from Guide Words and Design Parameters. From Leggett (ref 5

Parameter	More	Less	No	Reverse	As well as	Part of	Other than
low	Higher flow	Lower flow	No flow	Reverse flow	Extra material in stream	Mis-directed flow	Loss of flow control
ressure Fable 1. HAZOP Stu	Higher pressure	Lower pressure	Vacuum di Design Parameters		Explosion		
`emperature	Higher temperature	Lower temperature					
level	Higher level	Lower level	Empty	Loss of containment			Different level
ĩime	Too long/too late	Too short/too soon	Missed hold time				Wrong time
Jtilities	Too much flow, pressure, etc.	Partial loss of utility	Complete loss	Utility feeds reversed	Utility contaminated		Wrong utility hook-up
teaction	Fast reaction/ runaway	Slower reaction	No reaction	Back reaction	Unexpected reaction(s)	Incomplete reaction	Wrong recipe
Quantity	Too much added	Too little added	None added	Material removed	Additional chemical		


Department: Chemistry	Desc. of Operation: Use of Toxi	a / Elemmeble C	Dry D	aview Team Date 7/12		
Department. Chemistry	in Small Cylinder in Fume Hoo Page 1 of 4		as dy. K	By: Review Team Date 7/12		
What If?	Answer	Likeli- hood	Conse- quences	Recommendations		
 Power to exhaust fan is lost ? Mechanical Failure of Exhaust Fan ? Regulator fails or creeps and allows full cylinder pressure to apparatus ? Cylinder regulator guage blows ? Gas leak downstream of regulator – hood face at 18 inches ? Gas leak downstream of regulator – hood face at 30 inches with operator at hood ? Cylinder pressure is incorrect ? 	1. Possible exposure to toxic gas if gas flow continues 2. Same as above 3. Apparatus or tubing failure and gas release if not able to handle full cylinder pressure 4. High pressure gas release and possible exposure 5. Lower pressure gas release but potential	1. Likely 2. Quite Possible 3. Quite Possible	Serious Serious Minor Serious	 Provide Emergency Power and normally closed gas valve Same as above and consider connection to multiple fans Use flow restricting orifice in cylinder valve to limit flow or install excess flow shutoff valve. Consider gas monitor that is interlocked to shut down gas flow 		
9. Apparatus contains oxygen when gas is introduced ? 10. Residual process gas in equipment when opened ?	 exposure which increases with gas flow rate 6. Same as above but high potential for exposure 7. Potential exothermic reaction or if not, ruined experiment (and apparatus ?) 8. Regulator guage could fail – rapid release of high pressure gas 9. Explosion potential if gas hits flammable 	4. Low Prob 5. Quite Possible	Serious Serious	4. Same as above5. Same as above6. Same as above and restrict hood opening while gas flowing via interlock or stop and consider use of SCBA if access during flow is necessary		
	range and ignition source is present 10. Potential exposure to toxic gas	6. Quite Possible 7.Low Prob 8. Low Prob 9. Quite Possible	Serious Serious Serious	 Check cylinder tag, not just cylinder stencil. Same as above (see http://www.aiha.org/insideaiha/volunteergroups/ labHandScommittee/Pages/ArsineGasRelease.aspx Assure purge with inert gas before introducing flammable gas if ignition source may be present (consider 		
		10. Quite Possible	Serious Serious	automation) 10. Same as above – test atmosphere or use SCBA		


Additional Benefits from Review

- Participants Learn and Remember Expectations Useful for Future Projects
- Procedural Controls are Rolled Into SOPs (also could test SOPs during review)
- Participants Learn the Process
- PHR itself is documented for future reference
- Can apply to non research applications Lab Exhaust / HVAC, etc

Making an Impression -Retaining Key Concepts

What If for Students (and Parents)

- You Drive Too Fast
- You Lose Your Wallet
- You Place Something on the Roof of Your Car
- You Leave Something Valuable Behind In Your Unlocked Locker at the Gym

What If Assessment – Team Members

Todd Houts – University of Missouri
Gail Hall – Boston College University
Susan Newton – John Brown University
Mary Beth Koza – University of North Carolina – Chapel Hill